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Abstract

Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces
behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with
mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to
stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher
incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories,
which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three
social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and
corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress
were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social
defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after
exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were
limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These
data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress,
particularly in neurobiological mechanisms that are involved with the regulation of social behavior.
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Introduction

Stressful life experiences are known to contribute to the

development of mood disorders [1], yet the mechanisms that

translate these stressful experiences into behavior are poorly

understood. The development of imaging techniques to assess

changes in neurobiological activity associated with mood disorders

has provided new insights [2], but these approaches can not

establish cause and effect relationships. Some behavioral symp-

toms of mood disorders can be modeled in non-human animals,

which allows for the use of experimental approaches that can

identify causal mechanisms [3]. The social defeat model induces a

constellation of long lasting behavioral responses in many species

that mimic aspects of psychiatric disorders [4]. The rationale for

this model is that social conflict can be a precipitating factor for

many mood disorders [5,6]. One of the most robust responses to

social defeat is reduced social interaction behavior, which is

manifested by reduced social investigation (mice and rats) [7,8,9],

reduced sexual behavior (mice and tree shrews)[10,11] and

reduced territorial aggression (Syrian hamsters)[12,13]. The

reduction in social interaction can be reversed with chronic, but

not acute antidepressant treatments [8]. This is significant because

it matches the timeline of human behavioral responses to

antidepressants. The most commonly studied laboratory rodents

have low levels of female-female aggression, so it has been difficult

to study female responses to defeat (but see [14]). This is

problematic because depression and anxiety disorders are more

common in women than men [15,16]. Here we describe data

collected from the monogamous California mouse (Peromyscus

californicus), in which the social defeat paradigm is examined in

both males and females.

The California mouse is unique because males and females

aggressively defend joint territories against same sex intruders [17].

These aggressive behaviors can be observed during resident-

intruder tests in a laboratory setting, thus allowing for the use of

the social defeat model in an ethologically relevant context. We

previously observed that female, but not male, California mice

show increased glucocorticoid secretion following aggressive

interactions [18]. In some cases, exaggerated glucocorticoid

responses are associated with increased risk of mental disorders

[19]. Based on these data we hypothesized that females would

show stronger behavioral responses to social defeat than males.

Mice exposed to episodes of defeat or control episodes were

behaviorally phenotyped in tests assessing social interaction

behavior and exploratory behavior. Blood samples were collected

to assess sex differences and effects of defeat on corticosterone

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e17405



levels. We examined phosphorylated CREB (pCREB) and

phosphorylated extracellular-signal regulated kinase (pERK)

expression in the ‘‘extended amygdala’’ as indirect markers of

cellular activity. Anatomical and functional similarities among the

amygdala, bed nucleus of the stria terminalis (BNST), and nucleus

accumbens (NAc) shell have led some research groups to refer to

these regions as the ‘‘extended amygdala’’ [20]. Nuclei within this

circuit are known to mediate behavioral responses induced by

social defeat [8,21,22], so we examined indirect markers of brain

activity in these nuclei following social interaction testing.

Phosphorylation of ERK and CREB can be induced by several

different cellular pathways [23,24,25] and so analyses of these

proteins provides a coarse measure of cellular activity. Activation

of ERK (pERK) can reflect changes in intracellular calcium and

the activity of tyrosine kinase receptors. Once phosphorylated,

ERK can alter neuronal excitability [26] and increase phosphor-

ylation of CREB. CREB is a broader marker because it can also

be phosphorylated by changes in cAMP, which is regulated in part

by G protein receptors. Our results demonstrate sex differences in

behavioral responses to social defeat that are long lasting and

context dependent. We also present data describing the divergent

effects of social defeat stress on glucocorticoids and brain responses

in males and females.

Methods

Animals
California mice (Peromyscus californicus) were bred in our

laboratory colony at UC Davis. Mice were individually marked

with ear punches and housed in clear polypropylene cages

provided with Carefresh bedding and cotton nestlets. Harlan

Teklad 2016 food and water were provided ad libitum. Mice were

maintained on 16 h light/8 h dark cycle (lights off 1400 PST), a

summer-like light cycle that is commonly used in studies of

Peromyscus [27,28]. Although this summer-like light cycle is

required for many species of Peromyscus to be reproductively active

[29], the reproductive system in California mice is not suppressed

under winter-like short day light cycles [27,30,31,32]. All testing

procedures were approved by the UC Davis Institutional Animal

Care and Use Committee (Protocol 15425). Unless otherwise

indicated, all mice were 3 month old adults and housed 2–3 per

cage in same sex groups. Behavioral observations were conducted

in the dark phase under dim red light (3 lux) except for the light-

dark box test which was conducted during the light phase

(150 lux). Animals were maintained in accordance with the

recommendations of the National Institutes of Health Guide for the

Care and Use of Laboratory Animals.

Experiment 1
General experimental design. In experiment 1 mice were

randomly assigned to be exposed to social defeat or control

episodes. Males and females assigned to social defeat were

exposed to highly aggressive same-sex breeders on three

consecutive days (n = 9 males, n = 11 females). Although virgin

male and female California mice exhibit aggressive behavior

[33,34], pilot studies indicated that there was less variability in

aggression levels among breeders than virgin mice. Pups and the

breeder’s mate were removed 5 min before each episode of

defeat, which lasted 7 minutes or until the breeder attacked the

focal mouse 10 times. Control mice were introduced into a clean

cage for 7 minutes and then returned to the home cage (n = 10

males, n = 15 females). This paradigm is similar to studies

conducted in rats, but milder than studies on domestic mice

which use continual sensory contact with an aggressive resident

[8,35]. After exposure to defeat, each focal mouse was returned to

its home cage and cagemates. We hypothesized that three

episodes of defeat would be salient because previous work

demonstrates that three winning experiences has important

effects on brain and behavior [36,37].

A complicating factor when studying intact females is

accounting for variation in the ovarian cycle. Ideally, we would

have used vaginal lavage before behavioral tests to identify females

in diestrus, proestrus, or estrus before beginning social defeat or

control training. However, lavage itself is stressful and has

significant effects on behavior in female California mice ([30]; E.

S. Davis personal communication). Because social defeat and

control training was conducted across multiple days, each female

was trained across multiple stages of the estrous cycle. Thus

although variation in estrous cycle could influence the severity of

each episode of defeat, multiple bouts of defeat ensured that this

variation was not a confounding factor.

Social interaction test. Social interaction behavior was

investigated using an apparatus consisting of a large open field

(Fig. 1a, 89663660 cm) containing a small wire cage

(14617614.5 cm). Each focal mouse was introduced into the

open field for 3 min to habituate, and we recorded the amount of

time the focal mouse spent interacting with the empty wire cage

(within 8 cm, see blue box in Fig. 1A) using a video tracking

system (Stoelting, Wood Dale, IL). Next an unfamiliar, same sex

virgin mouse was introduced into the wire cage. For 3 min we

recorded the amount of time the focal mouse spent interacting

with the wire cage. We also measured time spent in the two

corners opposite the wire cage (868 cm, Fig 1A) and total

distance traveled as an estimate of total activity. After each test

the arena was cleaned with 70% ethanol and dried before the

next mouse was tested. Social interaction was assessed at

24 hours and 4 weeks after social defeat exposure. Different

stimulus mice were used for the two tests. In between the two

social interaction tests the mice were undisturbed except for

routine cage changes. Immediately after testing at 4 weeks, each

focal mouse was anesthetized with isoflurane and euthanized by

decapitation (14:45–17:00 PST). Brains were collected

immediately after testing to detect changes in phosphorylated

CREB and ERK, which we have previously quantified in

California mice after 7 min resident-intruder tests [30,38].

Trunk blood was collected in heparinized tubes and centrifuged

to collect plasma (see below for corticosterone assay methods).

Brains were quickly removed and immersion fixed in 5% acrolein

in phosphate buffered saline (PBS). Each female was lavaged

post-mortem. Estrous cycle stage was determined by assessing the

presence of leukocytes, nucleated epithelial cells, and/or cornified

cells [30,39].

Immunohistochemistry and Quantification. Brains were

sectioned at 40 mm on a microtome and stored in cryoprotectant

(50% v/v phosphate buffer, 30% w/v sucrose, 1% w/v

polyvinylpyrrolidone, 30% v/v ethylene glycol) at 220uC.

Sections were then washed 3 times in PBS and incubated in

1% sodium borohydride in PBS for 10 min. Sections were then

blocked in 10% normal goat serum and 0.3% hydrogen peroxide

in PBS for 20 min. Sections were then incubated in primary

pCREB (Cell Signaling, 1:100) or pERK (Cell Signaling, 1:250)

antibodies dissolved in 2% normal goat serum and 0.5% triton X

(TX) in PBS overnight at 4uC on an orbital shaker. These

primary antibodies have been used previously in California mice

[38]. The sections were then washed three times in PBS before

transferring to biotinylated goat anti-rabbit antibody in 2%

normal goat serum in PBS TX (Vector Laboratories,

Burlingame, CA, 1:500) for 2 hr. Sections were washed 3

Sex Differences in Effects of Social Defeat
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times in PBS and incubated in avidin-biotin complex (ABC Elite

Kit, Vector Laboratories) for 30 min. Sections were then washed

3 times in PBS and developed in nickel enhanced

diaminobenzidine (Vector Laboratories) for 2 minutes. Sections

were then rinsed in PBS and mounted onto plus slides (Fisher,

Pittsburgh, PA). Slides stained for pERK were dehydrated in

ethanol followed by Histoclear (National Diagnostics, Atlanta

GA) and coverslipped with Permount (Fisher). Slides stained for

pCREB were dehydrated, counterstained with eosin, cleared

with Histoclear, and coverslipped with Permount.

Representative photomicrographs (Fig. 2) were taken with a

Zeiss AxioImager and were based on a mouse brain atlas [40].

The background for each image was normalized by adjusting the

exposure time. The number of immunopositive cells in each brain

area was counted in a frame of uniform size (NAc core,

0.360.29 mm; NAc shell, 0.360.29 mm; dorsomedial BNST,

0.5360.3 mm; dorsolateral BNST, 0.5360.33 mm; ventral

BNST, 0.3460.34 mm; PVN 0.2460.18 mm; dorsal MEA,

0.3360.38 mm; ventral MEA, 0.3360.38 mm; BLA,

0.3860.19 mm; CEA, 0.38 mm diameter circle) using Image J

(NIH, Bethesda, MD) by an observer unaware of treatment

assignments. The number of positive cells was counted using the

‘‘analyze particles’’ function of Image J. Cell count data are

presented as number of positive cells per mm2.

Data Analysis. Analyses of Q-Q plots indicated that the data

from social interaction tests were normally distributed, and

variances were homogenous across treatment groups. We used

two-way ANOVA testing for effects of stress and sex to analyze

time spent interacting with the empty cage and the novel target

mouse. Separate analyses were conducted using data from the tests

conducted at 24 hr and 4 weeks after the last episode of social

defeat. An additional two-way ANOVA was performed on the

data from the 4 week test, this time comparing males, diestrus

females, and proestrus/estrus females. These categories were

based on the results of postmortem vaginal lavage observations.

Although we previously observed that estradiol levels are elevated

in proestrus females [30], we combined proestrus and estrus

females for this analysis because there were too few females in

these states to analyze separately. This may be explained by

previous observations showing that the diestrus phase in California

mice is variable and can be considerably longer than rats or mice

[41]. Analyses of Q-Q plots indicated that corticosterone and

immunohistochemistry cell count data were not normally

distributed, so Mann-Whitney U-tests were used to analyze these

data. We also used Spearman rank correlations to examine

relationships between cell counts across brain areas and with

behavior.

Experiment 2
General experimental design. In a second set of mice (See

Fig. 3 for timeline), males and females were randomly assigned

to defeat (n = 9 males, n = 9 females) or control conditions

(n = 10 males, n = 10 females) as described for experiment 1. The

number of offensive attacks was quantified during each episode

of defeat. Starting 4 weeks after the last social defeat test, mice

were tested in open field (days 33–35), habituation-dishabituation

tests (days 55–58), and light-dark box tests (days 64–65). We

attempted to minimize the effect of experience of the different

behavioral tests by waiting about 1 week in between each test

[42] and several days after blood sampling. On day 51 following

social defeat, retroorbital blood samples were collected 30 min

after lights out (apex sample, 1430–17:00 PST). On day 61, a

Figure 1. Social interaction behavior in male and female California mice four weeks after social defeat. In the apparatus used for testing
(A), the interaction zone is indicated by a blue box and the corner zones indicated by red boxes. There were no significant differences when mice
were tested with an empty cage (B). Females, but not males exposed to social defeat showed reduced social interaction behavior with a novel mouse
(C). Immediately after the social interaction test mice were euthanized and vaginal lavage was conducted to determine estrous cycle stage. Social
defeat reduced social interaction time at different stages of the estrous cycle (D). Corticosterone levels measured immediately after social interaction
testing were higher in females compared to males (E). * main effect of sex p,0.05, ** planned comparison control group versus stress group p,0.01.
*** planned comparison control group versus stress group p,0.01. All data are mean6s.e.
doi:10.1371/journal.pone.0017405.g001
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second retroorbital blood sample was collected 5 hrs before lights

out (nadir sample, 08:00–09:30 PST). Each cage was removed

one at a time from the colony room to an adjacent procedure

room, and each mouse was anesthetized with isoflurane for 60

sec before a blood sample was collected. All samples were taken

in quick succession and mice were placed in a clean cage

immediately after sampling to avoid exposing cagemates to

blood. All cages were returned to the colony room after the last

blood sample was collected. Light-dark box tests were conducted

on days 64–65. Body weights were taken on day 55 and a

sucrose preference test was conducted on day 42 (data not

shown). We did not monitor estrous cycles during the study

because conducting vaginal lavage in California mice has large

effects on female behavior [30].

Behavioral testing. Our tests of social interaction in

experiment 1 were conducted in a novel environment, which

can induce anxiety-like behavior in rodents [43]. To assess

whether social defeat alters responses to social stimuli in a

familiar environment, we conducted habituation-dishabituation

tests within the home cage. Habituation-dishabituation tests

consisted of 9 consecutive 2 min trials in which we assessed

investigation of water droplets (trials 1–3), diluted urine from an

unfamiliar same-sex mouse (trials 4–6), and diluted urine from a

second unfamiliar same-sex mouse (trials 7–9) [44]. Urine was

collected from adult males and females that were not in the study.

Mice were firmly gripped on the scruff of the neck and urine was

collected into centrifuge tubes and frozen at 220uC. Individual

samples were thawed and diluted 1 to 10 in water before testing.

Ten minutes before testing, cagemates of the mouse to be tested

were removed from the homecage. A drop of 10 ml of distilled

water was pipetted onto the center of a glass slide which was then

transferred into the cage for a 2 min trial. Slides were only used

once per trial to control for the possibility that focal mice might

mark the slide with urine (although this was not observed in this

study). During each trial the amount of time spent investigating

the drop was recorded. Two more trials with distilled water were

then conducted with a one minute inter-trial interval. After the

third trial with water, three additional trials were conducted with

10 ml of diluted urine placed on a slide. All mice were tested with

diluted urine samples from a same-sex mouse. The same sample

was used for each of the next three trials (4–6). To test whether

mice could discriminate between two odors each mouse was then

tested with urine samples from a second same-sex unfamiliar

mouse (trials 7–9). Immediately after testing the cagemates were

returned to the home cage, and only one mouse per cage was

tested per day.

We tested mice in the open field test because the presence of

the wire cage in the social interaction tests alters activity patterns

and is not strictly speaking an open field. Each mouse was placed

in a large arena (89663660 cm) for 10 min and was tracked

using a video tracking system. The light-dark box consisted of a

89663660 cm arena divided in half with a partition containing a

small opening (7.667.6 cm). Half of the box was covered

completely with a thick cloth. Tests were 5 min long and

conducted in the light phase.

Corticosterone Assay. Corticosterone was assayed using

an I125 labeled radioimmunoassay kit (MP Biomedicals,

Solon, OH) that has been used previously with California

mice [18,45]. California mice have very high baseline cor-

ticosterone levels, so samples were diluted 1:2000. The sensitivity

of this assay is 25 ng/mL. The intra-assay coefficient of variation

was 4.3%.

Data Analysis. Non-parametric Mann-Whitney and

Wilcoxon tests were used to analyze data from habituation-

Figure 2. Representation of areas quantified using microscopic analyses in experiment 1. Reproduced from Paxinos & Franklin (2003),
with permission from Academic Press. Abbreviations: Nucleus accumbens (NAc), dorsomedial bed nucleus of the stria terminalis (dmBNST),
dorsolateral bed nucleus of the stria terminalis (dlBNST), ventral bed nucleus of the stria terminalis (vBNST), paraventricular nucleus (PVN), basolateral
amygdala (BLA), central nucleus of the amygdala (CEA), dorsomedial amygdala (dMEA), dorsoventral amygdala (vMEA).
doi:10.1371/journal.pone.0017405.g002

Figure 3. Timeline of procedures in Experiment 2.
doi:10.1371/journal.pone.0017405.g003
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dishabituation tests because of non-normal distribution of data.

Non-parametric Mann-Whitney tests were also used to analyze

corticosterone data. Two-way ANOVA was used to analyze data

from open field and light-dark box tests as Q-Q plots indicated

these data were normally distributed, and the variances between

treatment groups were homogenous.

Table 1. Behavioral data from social interaction tests with empty cage and a novel mouse (target).

Male Male Female Female

Control Stress Control Stress

24 hr after last defeat

Time in interaction zone (empty) 84.3610.2 87.9610.3 66.866.8 70.368.1

Time in interaction zone (target) 132.4610+++ 113.7611+ 103.5611.2++ 89.4610.7

Time in corners (empty) 6.361.8 4.161.5 8.362.2 10.163.7

Time in corners (target) 2.661.0 6.062.0 8.4662.8 7.062.2

Total distance (empty) 27.463.8 25.762.0 30.062.5 27.461.5

Total distance (taget) 23.564.1 24.364.5 2662.6 27.362.4

4 weeks after last defeat

Time in interaction zone (empty) 100.367.6 102.468.6 104610.9 80.569.2

Time in interaction zone (target) 137.869.8++ 128.7613+ 15268.2+++ 89.969.7**

Time in corners (empty) 2.660.9 4.2861.6 4.361.4 6.761.3

Time in corners (target) 2.460.9 4.862.2 3.662.3 5.661.7

Total distance (empty) 29.964.4 25.162.7 27.364.1 29.861.8

Total distance (taget) 26.865.2 24.964.5 20.464 2762.5

All times in sec, all distances in m.
+ p,0.05,
++ p,0.01,
+++ p,0.001 paired t-test with empty cage trial (within group).
**p,0.01, planned comparison control vs. stress following significant sex x stress interaction. All data are mean6s.e.
doi:10.1371/journal.pone.0017405.t001

Figure 4. Immunostaining for phosphorylated CREB in female (A, B, C) and male (D,E, F) California mice after social interaction
tests. Mice were exposed to three control or social defeat episodes. Social defeat increased the number of pCREB positive cells in females but not
males in the NAc shell (C) and core (F). Control males generally had higher pCREB cell counts than control females. { Mann-Whitney sex difference in
controls p,0.05, *, **, Mann-Whitney effect of stress p,0.05, p,0.01 respectively. All data are mean6s.e. Anterior commissure, ac. Scale
bars = 100 mm.
doi:10.1371/journal.pone.0017405.g004
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Results

Experiment 1
One day after the last episode of defeat, males spent more time

interacting with the novel mouse (Table 1, F1,41 = 4.1, p,0.05)

than females and no overall effects of stress or interaction were

observed. However at four weeks, there was a significant sex x

stress interaction on social interaction time (Table 1, Fig. 1C;

F1,41 = 6.31, p,0.02). Stressed females spent significantly less time

than control females interacting with the novel mouse (planned

comparison, p,0.001) but there was no difference in males

(planned comparison, p.0.58). Reduced social interaction

responses in females persisted across different stages of the estrous

cycle (Fig. 1D; sex x stress interaction F2,41 = 3.94, p,0.05). Both

diestrus (planned comparison, p,0.001) and proestrus/estrus

(planned comparison, p,0.02) females exposed to social defeat

spent significantly less time interacting with the target mouse than

control females. There were no significant differences in time spent

interacting with the empty cage at 24 hr or 4 weeks after social

defeat (Table 1). There were no significant differences in time

spent in the corner zones or total activity during either the 24 hr

or 4 week tests (all p’s.0.15).

In the NAc females exposed to defeat had more pCREB

positive cells in the shell (Fig. 4C, Mann-Whitney U, p,0.05) and

core (Fig. 4F, p,0.05) immediately following social interaction

testing compared to control females. In males there was no

significant effect of stress on pCREB positive cells in either the

NAc shell (Fig. 4C) or NAc core (Fig. 4F). Control males had

more pCREB positive cells than control females in the NAc shell

Figure 5. Correlation between pCREB positive cells in NAc shell
and interaction time with a novel target mouse. Filled circles
(control males), open circles (stressed males), filled triangles (control
females), open triangles (stressed females). Spearman r= 20.37,
p,0.05.
doi:10.1371/journal.pone.0017405.g005

Figure 6. Immunostaining for phosphorylated ERK in female (A) and male (C) NAc. Males had more pERK positive cells than females in the
NAc shell (B) but not in the NAc core (D). { Mann-Whitney sex difference in controls p,0.05. All data are mean6s.e. Anterior commissure, ac. Scale
bars = 100 mm.
doi:10.1371/journal.pone.0017405.g006

Sex Differences in Effects of Social Defeat

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e17405



(Fig. 4C, Mann-Whitney, p,0.01). Across all mice, pCREB

positive cells in the shell were negatively correlated with time

spent interacting with the target mouse (Fig. 5, Spearman

r= 20.37, p,0.05). There were no significant correlations

between time spent interacting with the target mouse and

pCREB positive cells in the core (overall or within males or

females). There were no effects of stress on pERK positive cells in

the NAc (Fig. 6), but control males had more pERK positive cells

than control females in the NAc shell (Fig. 6B, Mann-Whitney,

p,0.05).

In the amygdala, pCREB cell counts were not closely associated

with patterns of social interaction behavior (Table 2). Control

males had higher cell counts than control females in the dorsal

MEA, BLA, and CEA but there were no effects of stress. Although

cell count data in the amygdala and PVN were not correlated with

behavior in the social interaction test, there were interesting

relationships between nuclei. In females there were positive

correlations between the NAc shell and CEA (Spearman

r= 0.51, p,0.05) and between NAc shell and BLA (r= 0.54,

p,0.05). These relationships were absent in males (p’s.0.2).

Females exposed to social defeat had more pERK positive cells in

the PVN compared to control females (Table 2, Mann-Whitney,

p,0.05). No differences were observed in males. Overall, there

was a nonsignificant trend for a negative correlation between

pERK positive cell counts in the PVN and time spent interacting

with the novel mouse (Spearman r= 20.33, p = 0.06). There were

no significant differences in pCREB immunostaining in the BNST.

Immediately after social interaction testing, females had higher

corticosterone levels than males (Fig. 1E, Mann-Whitney U,

p = 0.03), but there was no effect of stress or interaction.

Corticosterone levels were not correlated with social interaction

time in either males or females.

Experiment 2
During episodes of social defeat both males (mean6s.e.

offensive attacks, 8.160.4) and females (7.060.4) were exposed

to offensive attacks, although the number of attacks was higher in

males (Repeated measures ANOVA F1,18 = 4.66, p = 0.046).

In habituation-dishabituation tests, both control and stressed

males (Fig. 7a) showed a significant increase in time spent

investigating urine from unfamiliar males. In contrast, only control

females showed a significant increase in time spent investigating

urine from unfamiliar females whereas stressed females did not

(Fig. 7b). Social defeat, reduced the amount of time both males

and females investigated both social and non social odors (water

controls), suggesting that social defeat may induce an aversion to

novel objects within the home cage.

There were no main effects of sex or stress, or interactions on

time spent in the center of the open field or total activity (all

p’s.0.28, Fig. 8). In the light-dark box, females spent significantly

more time in the light side compared to males (Fig. 8, F1,33 = 4.65,

p,0.05). There were no differences in the latency to enter the light

side or the number of entries (all p’s.0.13).

During the light (inactive, nadir) phase, stressed males had

higher baseline corticosterone levels than control males (Fig. 9a,

Mann-Whitney U, p,0.05) but there was no effect of stress on

females. Control females also had higher corticosterone than

control males (Mann-Whitney U, p,0.05) in the light phase. In

the dark (active, apex) phase stressed males had higher

corticosterone levels than control males (Fig. 9b, Mann-Whitney

U, p,0.05) and there was no effect of stress in females. There was

no significant difference in corticosterone between control males

and females during the dark phase.

Discussion

Although the social defeat model robustly induces behavioral

responses related to mood disorders, its use has been constrained

almost entirely to males. Using monogamous California mice we

demonstrate for the first time that social defeat can induce a long

lasting reduction in social interaction behavior in females. This

behavioral change was not associated with changes in general

activity or exploratory behavior, suggesting that the effects of

social defeat in female California mice are relatively specific to

social contexts. Social interaction behavior was negatively

correlated with pCREB expression in the NAc shell, a relationship

that is consistent with previous studies linking the mesolimbic

dopamine system and reduced social interaction behavior in male

rodents [8,21,46] as well as findings of altered striatal dopamine

function in humans with social phobias [47,48](but see [49]). Our

results suggest that the mesolimbic dopamine system could be

more sensitive to social stress in females versus males.

Effects of Defeat on Social Interaction
In experiment 1 the effect of social defeat on social interaction

behavior in females was stronger after 4 weeks following defeat

versus one day after. This suggests that the effects of social defeat

may grow stronger over time, possibly due to long term changes

in gene expression or synaptic remodeling. To our knowledge,

this is the first demonstration of a long lasting reduction in social

interaction behavior by defeat in a female mammal. There was

little evidence that females exposed to defeat increased time

spent in the corners, as has been reported in studies on male

domestic mice [8]. This could reflect reduced motivation to

engage in social stimuli as opposed to increasing motivation to

Table 2. Cell counts for pCREB and pERK positive cells
immediately after social interaction tests.

Male Male Female Female

Control Stress Control Stress

pCREB

dorsomedial BNST 344688 1326142 3556142 2176109

dorsolateral BNST 395671 3426125 4646207 235666

ventromedial BNST 1,0946262 481699 1,0366295 9756306

paraventricular nucleus 8146137 580660 8976144 6576130

ventromedial amygdala 1,117690 9676340 9956362 9566261

dorsomedial amygdala 5706142{ 5066161{ 233699 2536167

central nucleus amygdala 1,8746154 1,3866243 9376183 1,0696138

basolateral amygdala 2726118{ 172676 37611 57616

pERK

dorsomedial BNST 69612 38615 38614 47621

dorsolateral BNST 464 563 968 562

ventromedial BNST 174642{ 57617 105654 132630

paraventricular nucleus 9616255 8536191 7406267* 1,7566360

ventral medial amygdala 176681 141628 158654 218642

dorsal medial amygdala 46624 32613 39627 30610

central nucleus amygdala 103630 52624 118680 141657

basolateral amygdala 163649 123632 117675 85634

{sex difference within treatment group p,0.05 Mann-Whitney test.
*effect of stress within sex p,0.05 Mann-Whitney test.
All data are mean6s.e.
doi:10.1371/journal.pone.0017405.t002
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avoid social stimuli. An alternative possibility is that the relatively

large arena that we used allowed mice to avoid the social

stimulus without entering the corners. There were no effects of

social defeat on time spent interacting with the empty cage,

indicating that changes in behavior were specific to social

stimuli. In the social interaction test mice were placed in a novel

environment, which is known to be anxiogenic [50]. Social

interaction testing has become prevalent in various forms

[8,51,52,53], and the vast majority of studies are conducted in

a novel environment. However, the potential anxiogenic effects

of a novel environment are rarely considered.

We used the habituation-dishabituation tests to examine

responses to social odors in a familiar environment. These results

generally supported our findings in the social interaction tests, as

defeat had a greater impact on the investigation of social odors in

females versus males. However, male and female mice exposed to

defeat spent less time investigating glass slides with water (a

relatively benign stimulus) than control mice. This suggests that

defeat may induce an aversion to novelty, at least in a familiar

environment. It is possible that an aversion to novelty could affect

measurements of social interaction. However, stressed males still

responded to same sex social odors whereas stressed females did

not. An additional possibility is that females exposed to defeat may

Figure 7. Effects of social defeat in the habituation-dishabit-
uation test. Social defeat reduced time spent investigating a glass
slide with a water droplet (trials 1–3) in both males (A) and females (B).
In males defeat reduced, but did not eliminate investigation of novel
male odors (trial 4 and 7). Females exposed to defeat did not show a
significant increase in investigation time of novel female odors (trials 4
and 7). {, {{ Mann-Whitney effect of stress p,0.05 and p,0.01
respectively. *, ** Wilcoxon test versus previous trial (trial 3 vs. 4 or 6 vs.
7) p,0.05, p,0.01 respectively. All data are mean6s.e.
doi:10.1371/journal.pone.0017405.g007

Figure 8. Effects of social defeat on time spent in the center (A)
and total activity (B) in the open field test and time spent on
the light side of the light-dark box test (C). * main effect of sex
p,0.05. All data are mean6s.e.
doi:10.1371/journal.pone.0017405.g008
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have developed reduced sensitivity for detecting social stimuli. In

domestic mice, social isolation rearing does not block investigation

of social odors but inhibits social learning and recognition [54].

The effects of social defeat on social learning or recognition in

female California mice are still unclear.

All mice were group housed with familiar cagemates throughout

the study. Group housing blunts the effects of social defeat in male

rats [55], an effect that could be due to positive social interactions.

However group housing did not have this effect in female

California mice. In rats it is possible that aggressive interactions

among cagemates could mediate the effects of stress on behavior.

For example, aggressive behavior directed at other individuals

following stress has been observed in several species [56,57], and

has been hypothesized to be a coping strategy. Currently little is

known about home cage social interactions among rodents

immediately following stressful experiences.

Effects of Defeat on Brain Responses to a Novel Target
Mouse

Previous research in male domestic mice demonstrated that the

NAc is an essential nucleus inducing reduced social interaction

behavior following social defeat [8,21]. In addition, two recent

studies reported that deep brain stimulation of the NAc reduces

ratings of depression and anxiety in at least some patients for

whom other standard treatments have been ineffective [58,59]. In

female California mice exposed to social defeat, we observed

elevated pCREB immunostaining in the NAc shell and core after

social interaction tests compared to control females. Although

there were no significant effects of stress on pCREB immuno-

staining in males, there was intriguing variability among stressed

males. In particular, two males exposed to defeat had almost

double the number of pCREB positive cells than next highest male

(Fig. 5). These males also had relatively low social interaction

scores and contributed to (but were not solely responsible for) the

negative correlation between pCREB immunostaining in the NAc

shell and social interaction time. These observations are consistent

with the hypothesis that increased activity in the NAc can inhibit

social interaction. Studies of hundreds of C57Bl6 mice have

classified males as susceptible or unsuceptible to social defeat based

on variation in behavioral responses in a social interaction test

[21]. Our results suggest that similar variation may exist in male

California mice. We also observed that control males had higher

pCREB and pERK cell counts in the NAc shell than control

females. Intriguingly, many studies in rodents examining bio-

chemical function in the NAc have observed a lack of sex

differences [60,61,62]. However, most of these studies focus on

baseline biochemical function as opposed to responses to an acute

stimulus. For example, male rats have a sustained upregulation in

pCREB expression in response to cocaine compared to females

[61]. Thus sex differences in NAc function may be context

dependent, and difficult to observe in the absence of a motivating

stimulus such as a drug or novel individual.

Studies in male hamsters have identified the BNST and several

nuclei of the amygdala as important brain regions mediating

behavioral responses to social defeat [63,64,65]. In the present

study we observed no effects of social defeat on pCREB or pERK

cell counts in these nuclei. Social defeat may indeed alter activity

of these nuclei, but these changes may not be reflected in pCREB

or pERK expression in response to a social stimulus. An additional

possibility is that the BNST and amygdalar nuclei have a more

important role immediately after social defeat [66]. We observed

that males had higher pCREB cell counts in the dorsal MEA and

BLA compared to females. Cell counts in these nuclei were not

correlated with behavior in the social interaction tests, so the

function of these sex differences is still unclear. Future functional

studies are needed to test whether the BNST and amygdalar nuclei

mediate the effect of defeat on social interaction responses.

Effects of Defeat on Corticosterone Levels
Several studies have observed that a subset of patients with

depression have elevated cortisol levels [67], particularly in the

evening nadir [68,69,70]. Although we observed reduced social

interaction behavior in female California mice, elevated baseline

corticosterone levels were not observed in females. It is possible

that stress-induced decreases in social interaction are induced in

the absence of an increase in baseline glucocorticoids. However,

this does not rule out glucocorticoids as a contributing factor. As

has been reported in numerous studies on rats [71,72,73], we

observed that control females had higher baseline corticosterone

levels than control males during the light phase. There is

Figure 9. Effects of social defeat on corticosterone. Social defeat increased baseline corticosterone in males but not females during both the
inactive (A) and active (B) phases. *, ** Mann-Whitney effect of stress p,0.05, p,0.01 respectively. { Mann-Whitney sex difference in controls p,0.05.
All data are mean6s.e.
doi:10.1371/journal.pone.0017405.g009
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considerable evidence that gonadal hormones contribute to this

sex difference in glucocorticoid secretion [74], and increased

glucocorticoid reactivity has been hypothesized as a contributing

risk factor for stress-induced diseases, including mental disorders

[75]. In experiment 1, both stressed and control female California

mice had higher corticosterone levels than males immediately

following social interaction tests. Although there was no effect of

social defeat in females, this could be due in part to a ceiling effect.

It is also possible that females exposed to social defeat have a

slower recovery profile than control females. This hypothesis is

supported by our observation of increased pERK cell counts in the

PVN of females exposed to defeat. In follow-up experiments we

have observed that ovariectomy diminishes corticosterone re-

sponses to social defeat, as well as ameliorating the effect of defeat

on social interaction behavior (Trainor, Silva, Takahashi &

Knoblauch unpublished), suggesting that ovarian hormones are

involved in mediating sex differences in response to defeat. Our

current findings suggest that female California mice (both control

and stressed) have exaggerated corticosterone responses to novel

same-sex mice in unfamiliar contexts, similar to what has been

observed in familiar contexts [18]. It should be noted that the high

corticosterone levels we observed in this study are consistent with

observations by other lab groups studying California mice

[41,45,76].

Intriguingly, social defeat increased baseline corticosterone

levels in males during both the light and dark phases. This is

despite the fact that few differences in behavior were observed

between stressed and control males. One possibility is that only a

subset of males exposed to social defeat show behavioral

responses, similar to what has been observed in C57Bl6 mice.

An alternative possibility is that males exposed to social defeat

exhibit behavioral changes in contexts that were not examined in

this study, such as the forced swim or tail suspension test. Further

study is needed to fully resolve male California mouse behavioral

responses to defeat.

Summary
A major weakness of the social defeat model has been an

inability to test hypotheses in females. This weakness was

overcome by studying the California mouse, and we demonstrated

for the first time that social defeat induces long lasting decreases in

social interaction behavior in female but not male California mice.

Our analyses of pCREB immunostaining suggest that the NAc

shell could be an important locus mediating effects of social defeat

on social interaction behavior. Social withdrawal is associated with

many mental disorders, so a better understanding of the

neurobiological mechanisms influencing social interaction behav-

ior could be applicable to many contexts.
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